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LETTER TO THE EDITOR 

Series expansion study of the distribution of currents in the 
elements of a random diodeinsulator network 

F M Bhattit‘i: and J W Essam 
Department of Mathematics, Royal Holloway and Bedford New College, University of 
London, Egham Hill, Egham, Surrey TW20 OEX, UK 

Received 3 February 1986 

Abstract. The critical exponent lk of the kth moment of the current distribution for random 
diode-insulator networks on the square and simple cubic lattices is calculated for a range 
of k using low density series expansion techniques. It is also shown that il = Y I I  where Y I I  

is the critical exponent of the parallel connectedness length for directed percolation. Our 
values of (,, for the simple cubic lattice are well fitted by a simple exponential formula 
with (lk - 1)/(&+, - 1) = $. The Skal-Shklovskii scaling relation for the conductivity is 
generalised to the kth moment and it follows that the exponent K describing the divergence 
of flicker noise is given by 

K * ( d  - l)~,+ + (4- 2 l 2 .  

This leads to the estimates 

1.17 f 0.03 square lattice 
1.46 f 0.06 

K = (  
simple cubic lattice. 

The current distribution in a random conductor-insulator network has recently been 
discussed in depth by Rammal et a1 [ l ,  21 where further references to the relevant 
background may be found. Here we investigate diode-insulator networks in which 
each edge of a graph G is a diode with probability p and an insulator with probability 
1-p independently of all other edges. In the configuration in which the diodes 
correspond to the edges of the subgraph G’ we let ie( G’) be the current through edge 
e when a current I is passed between vertices U and U except when there is no 
conducting path from U to U in which case ie( G’) = 0 for all e. For k 3 0 we define, 
following de Arcangelis et al [3), the kth moment of the current distribution by 

Lk(t(, U ;  G ’ ) =  [i,(G’)/Zlk ( 1 )  
e €  G’ 

and denote its value when averaged over all configurations (percolation average) by 

In the case when G is a lattice graph we suppose that all diodes, when present, are 
directed so as to have a positive component parallel to some fixed preferred direction 
[4]. For such a graph there is a probability (the critical probability for directed 

Lk(U, U ;  p ) .  
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percolation) below which the expected number of sites reachable from a given site by 
a conducting path is finite and above which it is infinite. The mean cluster size S ( p )  
is the expected number of reachable sites given that this is finite. In the percolation 
average which determines L k ( U ,  U; p) we give zero weight to configurations in which 
the number of reachable sites is infinite. For a lattice graph in which all sites are 
equivalent the sum of Lk(u, U; p) over U is independent of U and will be denoted by 

For any G‘ in which U and U are connected the union of all paths from U to U on 
G’ is known as the U-U backbone for G‘ and denoted by b( G’). The value of L k (  U, U; G’) 
clearly depends only on b( G’) since i,( G’) = 0 for any edge not in b( G’). It has been 
noted [2] that for undirected percolation Lo( U, U; G’) is the number of edges in b( G’), 
L2(u, U; G’) is the resistance measured between vertices U and U of b(G’) and 
L,( U, U; G‘) is the number of nodal edges in b( G‘). Also L4/ L: is a measure of the 
flicker noise amplitude [2]. These results are valid for directed as well as undirected 
percolation. We now show that, for the diode-insulator problem on the hypercubic 
lattice, L,(u,  U; G’) is the length tu, of the shortest path or chemical distance from U 
to U whenever U and U are connected. Since for this problem all conducting paths 
from U to U have the same length, I,, is this common length and the result is valid for 
any directed lattice with this property. Also tu, is proportional to the distance from U 
to U measured parallel to the preferred direction. 

The proof is as follows. For any subgraph G’ the edges of b( G’) may be partitioned 
into subsets E, ,  E 2 , .  . . , E, where the edges E, have a final vertex which is s steps 
away from U. For given E, any charge passing from U to U must pass through exactly 
one of the arcs in E, so that the sum of ie(G’) over the arcs of E, must be equal to 
I ;  hence 

X k ( P ) .  

L,(u, v ;  G ’ ) =  c ( i e ( G ’ ) / I ) =  9 (1/1) ie(G’)= tu,. (2) 
e e b ( G ’ )  s = l  e €  E, 

A similar result has been obtained by Blumenfeld and Aharony [5] for non-linear 
random resistor networks. A correspondence between the resistance of a non-linear 
network and the moments of the current distribution for a linear network has been 
demonstrated for hierarchical lattices by de Arcangelis et a1 [6]. If this relation were 
exact for real lattices then our result would be equivalent to that of Blumenfeld and 
Aharony. However, it is easily shown that (2) is not exact when paths between U and 
U of different length occur and it is therefore not exact for undirected percolation. 

The average value of L k ( U ,  U; p )  over all pairs of lattice sites is given by 2 k ( p )  = 
X k ( p ) / S (  p ) .  The above interpretations imply that LZ2( p )  is the point-to-point resistance 
function considered in reference [7] and 2 , ( p )  is a measure of tI1(p),  the connectedness 
length [8,9] parallel to the preferred direction. Coniglio [lo] has shown that Tm(p), 
the expected number of nodal edges, diverges at p c  with critical exponent lm= 1 and 
since 2 k ( p )  9m(p) ,  

2 k (  p )  - ( p c  - (3) 
where for k’> k, 1 < l k ’ s  l k .  It has been shown [9] that for directed percolation the 
expected number of backbone edges 2,,( p )  is equal to S (  p )  so that lo = y and from 
our result for 2 , ( p ) ,  5, = q. These exponents and the resistive exponent l2 = lR have 
been previously calculated for directed percolation on the square and simple cubic 
lattices by low density series expansion methods [9, 11,121. In this letter we extend 
these calculations to higher values of k. 
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The moments L k (  U, U ;  G') have the following two important properties in common 
with the resistance R,,(G') between U and U. 

(i)  Lk depends only on the backbone of G' since no current passes through the 
arcs not in the backbone. 

(ii) If G' has a path from U to U and is the series combination of graphs G; and 
Gi which have vertex w in common then & ( U ,  U ;  G') = L k ( U ,  w ;  G;) + L k ( w ,  U ;  G9. 

Functions with properties (i) and (ii) are called additive backbone functions and 
it has been shown [ l l ]  that the susceptibilities corresponding to such functions for 
percolation on directed lattices may be factorised, X k (  p )  = * k (  p)s( p ) * ,  where * \ ~ t k (  p )  
is the contribution to the cluster expansion from non-nodal backbones. It has also 
been shown [13] that 

* k ( p )  =C L k ( b i ) $ i ( P )  (4) 
I 

where the sum is over all possible backbones bi with initial root at U. $i(p) is a 
polynomial of order p a ,  where a is the number of arcs in the smallest non-nodal 
backbone which contains bi and is known as a generalised perimeter polynomial. It 
has the useful property of being independent of k and since q 1 ( p )  may be found by 
an independent transfer matrix method [9] we have a good check on the calculation 
of the &. 

We have obtained the series expansions of & ( P )  on the square and simple cubic 
lattices for various values of k to order p" and p" respectively. The number of 
non-isomorphic non-nodal backbone graphs required was 320 for the square lattice 
and 28 for the simple cubic lattice and the number of non-isomorphic backbones which 
are subgraphs of these graphs is 1177 and 46 respectively. A list of these graphs for 
the square lattice as far as 12 edges may be found in reference [13]. The series 
coefficients for x4(p) are given in table 1 and we take this opportunity of correcting 
minor errors arising from real to rational conversion in the last coefficients of our 

Table 1. Coefficients in the low density expansion of x4( p )  = Xz=, a$". 

Square lattice Simple cubic lattice 

* an am 

1 0.200 000 000 OOO OOO OOO 000 000 00D+01 
2 0.800 OOO 000 000 OOO OOO 000 000 00D + 01 
3 0.240 000 000 OOO OOO 000 OOO OOO 00D+02 
4 0.602 500 000 000 OOO 000 OOO OOO OOD+ 02 
5 0.141 000 000 000 000 000 000 OOO 00D+03 
6 0.303 750 000 OOO OOO 000 OOO OOO 00D+03 
7 0.639 976 400 OOO 000 000 OOO OOO 00D+03 
8 0.127 490 560 OOO 000 000 OOO OOO OOD + 04 
9 0.252 768 808 369 324 008 990 819 78D+04 

10 0.480 288 523 884 002 847 463 921 25D+04 
1 1  0.914 566 333 965 692 816 279 676 95D+ 04 
12 0.168173 114084769819902381 79D+05 
13 0 .31175582120395583840330378D+05 
14 0.55836378242844717031866277D+05 
15 0.101 656399 753 088 407 250 517 17D+06 
16 0.17832779446774336658787851D+06 
17 0.320 003 545 056 116 177 684 968 32D+06 

0.300 000 OOO OOO 000 OOO OOO OOO 00D+01 
0.180 000 000 000 000 OOO 000 000 OOD+ 02 
0.810000000000000000000000OOD+02 
0.312750000000000000000000OOD+03 
0.112950000000000000000000OOD+04 
0.382387500000000000000000OOD+04 
0.126 036 084 000 000 000 000 000 OOD + 05 
0.400 021 410 000 OOO 000 000 000 OOD + 05 
0.12531555507762082357084519D+06 
0.38277480474128805606976701D+06 
0.11613049750460902298486251D+07 
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Table 2. Pad6 approximant estimates of yk, y, vIl and Y- . 

Square lattice Simple cubic lattice 
k (p,=0.644701*0.000012~) (p,= 0.3814*0.0007$) Exact relation 

0.0 
0.5 
1 .o 
1.5 
2.0 
3.0 
4.0 
5.0 
6.0 
8.0 

10.0 
12.0 

4.559+ 11  1Apc*O.015 
4.247 + 93Ap, * 0.015 
3.997 + 71Apc*O.018 
3.805 +68ApC*0.017 
3.660+65Apc*0.008 
3.479+54Apc*O.013 
3.387 +48ApC*0.016 
3.337+48Apc* 0.009 
3.310+52Apc*0.O09 
3.289 + 48Ap, * 0.009 
3.282 + 56Ap,* 0.008 
3.279+ 53ApC*0.005 

3.067+59Apc*O.041 Yes=2Y 
2.902 + 59Ap, * 0.024 
2.789 + 57Ap, * 0.020 
2.712 + 42Ap, * 0.018 

2.597+37Ap,*O0.O11 
2.567 + 35Ap,* 0.009 
2.552+ 34Apc*0.O10 
2.544+ 33ApC*0.012 
2.538+33Apc*0.O08 

Yll + y 

2.659+42Apc*O.012 YR 

Y 2.277 21 + 90Ap, * 0.000 01 t 1.533+34Apci0.O02$ 
1.7332(5)+68Ap,*O.O001t 1.264+ 16ApC*0.002$ Yll 
1.097+64Ap,*0.001~ 0.706 + 14Ap, * 0.002$ 

K 1.174+ 140Ap,* 0.03 1.458 + 29Ap, * 0.041 

t Reference [13]. 
$ From reanalysis of the series of reference [7] using correction to scaling analysis 

previously published series [ 11,121 for xR( p )  = x2( p ) .  The numerators in the last 
coefficients of VR(p) should be: on the square lattice al,(Num) = 11 188 788 611 053 
562 394 217 805 041 069 668 230 454 688 054 618 909 687 392 954 944 236 841 993 
282 790 166 252 801 and on the simple cubic lattice all(Num)=52662427 739944. 
The denominators are correct. The corresponding corrected xR( p )  coefficients are 
b17 = 373 220.825 206 888 192 393 833 02 and bll  = 1220 941.342 557 058 361 295 4618. 
No significant change in our estimates of yR was caused by these errors and no such 
errors occurred in our calculations for the undirected square lattice [14]. 

We have determined the critical exponent Y k  of X k ( P )  for a range of values of k 
using the series analysis method of Adler et a1 [ 151 and the results are shown in table 
2. The quoted errors allow for a correction to scaling exponent A1 in the range 
IAl - 11 d 0.03 for the square lattice [ 161 and [A1 - 1.091 d 0.1 1 for the simple cubic. The 
coefficient of Ap, gives the sensitivity to change in the p ,  estimate. In figure 1 we plot 
l k  = Y k  - y using the values of Y k  in table 2 and fit the data first to an exponential 
curve through the points k = 0 and k = 1 and second to a curve of the type discussed 
in reference [3] through the point k = 0 .  Using the above results for lo, l1 and loo 
together with an exponential assumption gives l k  = 1 + ( y - 1)a where a = 
(vi1 - l ) / (y  - 1)  and the curves are derived using the values of vlI and y in table 2. For 
the simple cubic lattice the exponential curve is an excellent fit and all the data are 
consistent with a ratio a = i. The error bars in the figure exclude the contribution from 
the uncertainty of p c  but a change of p c  within our quoted range does not change the 
above conclusion. The same ratio occurs asymptotically for k + 03 in the formula of 
reference [3]. The value of A in the latter formula which gives our estimated lo is 
A = 0.722. For the square lattice neither curve is a good fit but the curve of reference 
[3] has the merit of only being adjusted at one point. The value a = 0.574 which we 
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k 

Figure 1. Plot of & against k for the square lattice (upper points) and simple cubic lattice 
(lower points). The full curves represent an exponential fit at the points k = 0 and k = 1 
and the broken curves are of the type of reference [3] fitted at k = 0. 

have used was obtained from the much longer series of reference [ 161 whereas a better 
fit could be obtained with a = 0.53. The value of A for the square latticz is 1.114. 

In order to relate & to the critical exponents for a ‘parallel plate’ geometry we 
consider a sample of the lattice in the form of a hypercube of side L >> [ i l (p)  with 
preferred direction parallel to one of the cube axes. The vertices in the two 
( d  - 1)-dimensional hyperfaces of the cube perpendicular to the preferred direction 
are maintained at equal potential by ‘plates’ of high conductivity. This is equivalent 
to identifying all the vertices in each hyperface, the resulting terminal vertices being 
called U and 0. We denote by h k ( p ,  L) the value of &(U, U ;  p )  for this geometry. For 
p < pc the probability of a conducting path between the faces tends to zero as L + 0;) 

and hence Ak + 0. For p > pc we generalise the argument of Skal and Shklovskii [ 171 
for the conductivity of a random conductor-insulator network. Divide the sample into 
rectangular supercells of length tI1(p) in the preferred direction and width equal to 
the perpendicular connectedness length t , ( p ) .  Writing the sum over arcs in the 
definition of A k ( p ,  L )  as a sum over arcs within a given supercell followed by a sum 
over supercells gives 

where E is the expected value or percolation average. 
Neglecting the variation of the expected value between supercells gives 

A k ( P ,  L)-[L/S,(P)ld-’[L/S~~(p)l[i/rlkE ( e E supercell c [k-(G’)/iIk) ( 6 )  

where i is the current through a given supercell (neglecting fluctuations) and the first 
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two prefactors together give the number of supercells. Now i /  I = (e1( P ) / L ) ~ - '  and 
estimating the last term by 2:( p )  the average value of Lk( U, U ;  p )  over pairs of sites 
at distances of order eI1(p) gives 

Ak(P, L )  - [ ~ L ( P ) / L I ' ~ - ' " ~ - ' '  r L/ 511 (P )I%( P). (7) 

Assuming that Tl( p )  - z k (  p )  and that z k (  p ) ,  ell( p )  and el( p )  have the same critical 
exponents above and below p c  we find, for p > p c ,  that 

For k = 2 this reduces to the formula of Redner [18] for the conductivity exponent ti 
and for general k the value of fk  for a conductor-insulator system is obtained by setting 
v1 = VI1 = v. 

Rammal et a1 [ l ]  considered the noise generated by independent fluctuations in 
the diode resistances under constant external current conditions and took as a measure 
of this noise 

where (. . .) is the average over the distribution of the resistance variables re, p', = 
and 

It was shown in [ 13 that if re = r and pe = p for all e then 

YUU(G') = (P/rI2L4(% U ;  G')/[L*(u, U ;  WIZ. (12) 

Denoting the percolation average of this quantity for the parallel plate geometry by 
y( p,  L ) ,  scaling arguments in the neighbourhood of p c  lead to 

%P, L)--A4(P, L)/(A2(P, L))2-(P-Pc)-" (13) 

K = t4-2t2 = ( d  - l )v ,+  + J4-212. (14) 

where, using (9), 

This result for the conductor-insulator system for which vI = vll = v is equivalent to 
K = ( d  + 2x1 - x2) v which may be obtained by combining the equations of Rammal et 
a1 [2] where x, is defined by A2"(pc, L )  - L-".. The identification x, = -&/v may 
be made by finite-size scaling arguments with the result K = d v - l s  where 
5 s  = 252 - 5 4 .  

Using the values of y2, y4, y, vIl and vL from table 2 we find from (14) the value 
of K in table 2. We believe these to be the first estimaes of this exponent for the 
diode-insulator problem. 
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